faceta-algo-server/deepface/models/facial_recognition/DeepID.py

97 lines
2.4 KiB
Python
Raw Normal View History

2024-10-11 15:15:15 +00:00
# project dependencies
from deepface.commons import package_utils, weight_utils
from deepface.models.FacialRecognition import FacialRecognition
from deepface.commons.logger import Logger
logger = Logger()
tf_version = package_utils.get_tf_major_version()
if tf_version == 1:
from keras.models import Model
from keras.layers import (
Conv2D,
Activation,
Input,
Add,
MaxPooling2D,
Flatten,
Dense,
Dropout,
)
else:
from tensorflow.keras.models import Model
from tensorflow.keras.layers import (
Conv2D,
Activation,
Input,
Add,
MaxPooling2D,
Flatten,
Dense,
Dropout,
)
# pylint: disable=line-too-long
# -------------------------------------
# pylint: disable=too-few-public-methods
class DeepIdClient(FacialRecognition):
"""
DeepId model class
"""
def __init__(self):
self.model = load_model()
self.model_name = "DeepId"
self.input_shape = (47, 55)
self.output_shape = 160
def load_model(
url="https://github.com/serengil/deepface_models/releases/download/v1.0/deepid_keras_weights.h5",
) -> Model:
"""
Construct DeepId model, download its weights and load
"""
myInput = Input(shape=(55, 47, 3))
x = Conv2D(20, (4, 4), name="Conv1", activation="relu", input_shape=(55, 47, 3))(myInput)
x = MaxPooling2D(pool_size=2, strides=2, name="Pool1")(x)
x = Dropout(rate=0.99, name="D1")(x)
x = Conv2D(40, (3, 3), name="Conv2", activation="relu")(x)
x = MaxPooling2D(pool_size=2, strides=2, name="Pool2")(x)
x = Dropout(rate=0.99, name="D2")(x)
x = Conv2D(60, (3, 3), name="Conv3", activation="relu")(x)
x = MaxPooling2D(pool_size=2, strides=2, name="Pool3")(x)
x = Dropout(rate=0.99, name="D3")(x)
x1 = Flatten()(x)
fc11 = Dense(160, name="fc11")(x1)
x2 = Conv2D(80, (2, 2), name="Conv4", activation="relu")(x)
x2 = Flatten()(x2)
fc12 = Dense(160, name="fc12")(x2)
y = Add()([fc11, fc12])
y = Activation("relu", name="deepid")(y)
model = Model(inputs=[myInput], outputs=y)
# ---------------------------------
weight_file = weight_utils.download_weights_if_necessary(
file_name="deepid_keras_weights.h5", source_url=url
)
model = weight_utils.load_model_weights(
model=model, weight_file=weight_file
)
return model