# project dependencies from deepface.commons import package_utils, weight_utils from deepface.models.FacialRecognition import FacialRecognition from deepface.commons.logger import Logger logger = Logger() tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Model from keras.layers import ( Conv2D, Activation, Input, Add, MaxPooling2D, Flatten, Dense, Dropout, ) else: from tensorflow.keras.models import Model from tensorflow.keras.layers import ( Conv2D, Activation, Input, Add, MaxPooling2D, Flatten, Dense, Dropout, ) # pylint: disable=line-too-long # ------------------------------------- # pylint: disable=too-few-public-methods class DeepIdClient(FacialRecognition): """ DeepId model class """ def __init__(self): self.model = load_model() self.model_name = "DeepId" self.input_shape = (47, 55) self.output_shape = 160 def load_model( url="https://github.com/serengil/deepface_models/releases/download/v1.0/deepid_keras_weights.h5", ) -> Model: """ Construct DeepId model, download its weights and load """ myInput = Input(shape=(55, 47, 3)) x = Conv2D(20, (4, 4), name="Conv1", activation="relu", input_shape=(55, 47, 3))(myInput) x = MaxPooling2D(pool_size=2, strides=2, name="Pool1")(x) x = Dropout(rate=0.99, name="D1")(x) x = Conv2D(40, (3, 3), name="Conv2", activation="relu")(x) x = MaxPooling2D(pool_size=2, strides=2, name="Pool2")(x) x = Dropout(rate=0.99, name="D2")(x) x = Conv2D(60, (3, 3), name="Conv3", activation="relu")(x) x = MaxPooling2D(pool_size=2, strides=2, name="Pool3")(x) x = Dropout(rate=0.99, name="D3")(x) x1 = Flatten()(x) fc11 = Dense(160, name="fc11")(x1) x2 = Conv2D(80, (2, 2), name="Conv4", activation="relu")(x) x2 = Flatten()(x2) fc12 = Dense(160, name="fc12")(x2) y = Add()([fc11, fc12]) y = Activation("relu", name="deepid")(y) model = Model(inputs=[myInput], outputs=y) # --------------------------------- weight_file = weight_utils.download_weights_if_necessary( file_name="deepid_keras_weights.h5", source_url=url ) model = weight_utils.load_model_weights( model=model, weight_file=weight_file ) return model