# 3rd party dependencies import tensorflow as tf # project dependencies from deepface.commons import package_utils, weight_utils from deepface.models.FacialRecognition import FacialRecognition from deepface.commons.logger import Logger logger = Logger() tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Model from keras.layers import Conv2D, ZeroPadding2D, Input, concatenate from keras.layers import Dense, Activation, Lambda, Flatten, BatchNormalization from keras.layers import MaxPooling2D, AveragePooling2D from keras import backend as K else: from tensorflow.keras.models import Model from tensorflow.keras.layers import Conv2D, ZeroPadding2D, Input, concatenate from tensorflow.keras.layers import Dense, Activation, Lambda, Flatten, BatchNormalization from tensorflow.keras.layers import MaxPooling2D, AveragePooling2D from tensorflow.keras import backend as K # pylint: disable=unnecessary-lambda # --------------------------------------- # pylint: disable=too-few-public-methods class OpenFaceClient(FacialRecognition): """ OpenFace model class """ def __init__(self): self.model = load_model() self.model_name = "OpenFace" self.input_shape = (96, 96) self.output_shape = 128 def load_model( url="https://github.com/serengil/deepface_models/releases/download/v1.0/openface_weights.h5", ) -> Model: """ Consturct OpenFace model, download its weights and load Returns: model (Model) """ myInput = Input(shape=(96, 96, 3)) x = ZeroPadding2D(padding=(3, 3), input_shape=(96, 96, 3))(myInput) x = Conv2D(64, (7, 7), strides=(2, 2), name="conv1")(x) x = BatchNormalization(axis=3, epsilon=0.00001, name="bn1")(x) x = Activation("relu")(x) x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D(pool_size=3, strides=2)(x) x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name="lrn_1")(x) x = Conv2D(64, (1, 1), name="conv2")(x) x = BatchNormalization(axis=3, epsilon=0.00001, name="bn2")(x) x = Activation("relu")(x) x = ZeroPadding2D(padding=(1, 1))(x) x = Conv2D(192, (3, 3), name="conv3")(x) x = BatchNormalization(axis=3, epsilon=0.00001, name="bn3")(x) x = Activation("relu")(x) x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name="lrn_2")(x) # x is equal added x = ZeroPadding2D(padding=(1, 1))(x) x = MaxPooling2D(pool_size=3, strides=2)(x) # Inception3a inception_3a_3x3 = Conv2D(96, (1, 1), name="inception_3a_3x3_conv1")(x) inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_3x3_bn1")( inception_3a_3x3 ) inception_3a_3x3 = Activation("relu")(inception_3a_3x3) inception_3a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3) inception_3a_3x3 = Conv2D(128, (3, 3), name="inception_3a_3x3_conv2")(inception_3a_3x3) inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_3x3_bn2")( inception_3a_3x3 ) inception_3a_3x3 = Activation("relu")(inception_3a_3x3) inception_3a_5x5 = Conv2D(16, (1, 1), name="inception_3a_5x5_conv1")(x) inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_5x5_bn1")( inception_3a_5x5 ) inception_3a_5x5 = Activation("relu")(inception_3a_5x5) inception_3a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5) inception_3a_5x5 = Conv2D(32, (5, 5), name="inception_3a_5x5_conv2")(inception_3a_5x5) inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_5x5_bn2")( inception_3a_5x5 ) inception_3a_5x5 = Activation("relu")(inception_3a_5x5) inception_3a_pool = MaxPooling2D(pool_size=3, strides=2)(x) inception_3a_pool = Conv2D(32, (1, 1), name="inception_3a_pool_conv")(inception_3a_pool) inception_3a_pool = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_pool_bn")( inception_3a_pool ) inception_3a_pool = Activation("relu")(inception_3a_pool) inception_3a_pool = ZeroPadding2D(padding=((3, 4), (3, 4)))(inception_3a_pool) inception_3a_1x1 = Conv2D(64, (1, 1), name="inception_3a_1x1_conv")(x) inception_3a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_1x1_bn")( inception_3a_1x1 ) inception_3a_1x1 = Activation("relu")(inception_3a_1x1) inception_3a = concatenate( [inception_3a_3x3, inception_3a_5x5, inception_3a_pool, inception_3a_1x1], axis=3 ) # Inception3b inception_3b_3x3 = Conv2D(96, (1, 1), name="inception_3b_3x3_conv1")(inception_3a) inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_3x3_bn1")( inception_3b_3x3 ) inception_3b_3x3 = Activation("relu")(inception_3b_3x3) inception_3b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3) inception_3b_3x3 = Conv2D(128, (3, 3), name="inception_3b_3x3_conv2")(inception_3b_3x3) inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_3x3_bn2")( inception_3b_3x3 ) inception_3b_3x3 = Activation("relu")(inception_3b_3x3) inception_3b_5x5 = Conv2D(32, (1, 1), name="inception_3b_5x5_conv1")(inception_3a) inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_5x5_bn1")( inception_3b_5x5 ) inception_3b_5x5 = Activation("relu")(inception_3b_5x5) inception_3b_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5) inception_3b_5x5 = Conv2D(64, (5, 5), name="inception_3b_5x5_conv2")(inception_3b_5x5) inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_5x5_bn2")( inception_3b_5x5 ) inception_3b_5x5 = Activation("relu")(inception_3b_5x5) inception_3b_pool = Lambda(lambda x: x**2, name="power2_3b")(inception_3a) inception_3b_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3b_pool) inception_3b_pool = Lambda(lambda x: x * 9, name="mult9_3b")(inception_3b_pool) inception_3b_pool = Lambda(lambda x: K.sqrt(x), name="sqrt_3b")(inception_3b_pool) inception_3b_pool = Conv2D(64, (1, 1), name="inception_3b_pool_conv")(inception_3b_pool) inception_3b_pool = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_pool_bn")( inception_3b_pool ) inception_3b_pool = Activation("relu")(inception_3b_pool) inception_3b_pool = ZeroPadding2D(padding=(4, 4))(inception_3b_pool) inception_3b_1x1 = Conv2D(64, (1, 1), name="inception_3b_1x1_conv")(inception_3a) inception_3b_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_1x1_bn")( inception_3b_1x1 ) inception_3b_1x1 = Activation("relu")(inception_3b_1x1) inception_3b = concatenate( [inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1], axis=3 ) # Inception3c inception_3c_3x3 = Conv2D(128, (1, 1), strides=(1, 1), name="inception_3c_3x3_conv1")( inception_3b ) inception_3c_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3c_3x3_bn1")( inception_3c_3x3 ) inception_3c_3x3 = Activation("relu")(inception_3c_3x3) inception_3c_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3c_3x3) inception_3c_3x3 = Conv2D(256, (3, 3), strides=(2, 2), name="inception_3c_3x3_conv" + "2")( inception_3c_3x3 ) inception_3c_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_3c_3x3_bn" + "2" )(inception_3c_3x3) inception_3c_3x3 = Activation("relu")(inception_3c_3x3) inception_3c_5x5 = Conv2D(32, (1, 1), strides=(1, 1), name="inception_3c_5x5_conv1")( inception_3b ) inception_3c_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3c_5x5_bn1")( inception_3c_5x5 ) inception_3c_5x5 = Activation("relu")(inception_3c_5x5) inception_3c_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3c_5x5) inception_3c_5x5 = Conv2D(64, (5, 5), strides=(2, 2), name="inception_3c_5x5_conv" + "2")( inception_3c_5x5 ) inception_3c_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_3c_5x5_bn" + "2" )(inception_3c_5x5) inception_3c_5x5 = Activation("relu")(inception_3c_5x5) inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b) inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_3c_pool) inception_3c = concatenate([inception_3c_3x3, inception_3c_5x5, inception_3c_pool], axis=3) # inception 4a inception_4a_3x3 = Conv2D(96, (1, 1), strides=(1, 1), name="inception_4a_3x3_conv" + "1")( inception_3c ) inception_4a_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_4a_3x3_bn" + "1" )(inception_4a_3x3) inception_4a_3x3 = Activation("relu")(inception_4a_3x3) inception_4a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_4a_3x3) inception_4a_3x3 = Conv2D(192, (3, 3), strides=(1, 1), name="inception_4a_3x3_conv" + "2")( inception_4a_3x3 ) inception_4a_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_4a_3x3_bn" + "2" )(inception_4a_3x3) inception_4a_3x3 = Activation("relu")(inception_4a_3x3) inception_4a_5x5 = Conv2D(32, (1, 1), strides=(1, 1), name="inception_4a_5x5_conv1")( inception_3c ) inception_4a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_4a_5x5_bn1")( inception_4a_5x5 ) inception_4a_5x5 = Activation("relu")(inception_4a_5x5) inception_4a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_4a_5x5) inception_4a_5x5 = Conv2D(64, (5, 5), strides=(1, 1), name="inception_4a_5x5_conv" + "2")( inception_4a_5x5 ) inception_4a_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_4a_5x5_bn" + "2" )(inception_4a_5x5) inception_4a_5x5 = Activation("relu")(inception_4a_5x5) inception_4a_pool = Lambda(lambda x: x**2, name="power2_4a")(inception_3c) inception_4a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_4a_pool) inception_4a_pool = Lambda(lambda x: x * 9, name="mult9_4a")(inception_4a_pool) inception_4a_pool = Lambda(lambda x: K.sqrt(x), name="sqrt_4a")(inception_4a_pool) inception_4a_pool = Conv2D(128, (1, 1), strides=(1, 1), name="inception_4a_pool_conv" + "")( inception_4a_pool ) inception_4a_pool = BatchNormalization( axis=3, epsilon=0.00001, name="inception_4a_pool_bn" + "" )(inception_4a_pool) inception_4a_pool = Activation("relu")(inception_4a_pool) inception_4a_pool = ZeroPadding2D(padding=(2, 2))(inception_4a_pool) inception_4a_1x1 = Conv2D(256, (1, 1), strides=(1, 1), name="inception_4a_1x1_conv" + "")( inception_3c ) inception_4a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_4a_1x1_bn" + "")( inception_4a_1x1 ) inception_4a_1x1 = Activation("relu")(inception_4a_1x1) inception_4a = concatenate( [inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1], axis=3 ) # inception4e inception_4e_3x3 = Conv2D(160, (1, 1), strides=(1, 1), name="inception_4e_3x3_conv" + "1")( inception_4a ) inception_4e_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_4e_3x3_bn" + "1" )(inception_4e_3x3) inception_4e_3x3 = Activation("relu")(inception_4e_3x3) inception_4e_3x3 = ZeroPadding2D(padding=(1, 1))(inception_4e_3x3) inception_4e_3x3 = Conv2D(256, (3, 3), strides=(2, 2), name="inception_4e_3x3_conv" + "2")( inception_4e_3x3 ) inception_4e_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_4e_3x3_bn" + "2" )(inception_4e_3x3) inception_4e_3x3 = Activation("relu")(inception_4e_3x3) inception_4e_5x5 = Conv2D(64, (1, 1), strides=(1, 1), name="inception_4e_5x5_conv" + "1")( inception_4a ) inception_4e_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_4e_5x5_bn" + "1" )(inception_4e_5x5) inception_4e_5x5 = Activation("relu")(inception_4e_5x5) inception_4e_5x5 = ZeroPadding2D(padding=(2, 2))(inception_4e_5x5) inception_4e_5x5 = Conv2D(128, (5, 5), strides=(2, 2), name="inception_4e_5x5_conv" + "2")( inception_4e_5x5 ) inception_4e_5x5 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_4e_5x5_bn" + "2" )(inception_4e_5x5) inception_4e_5x5 = Activation("relu")(inception_4e_5x5) inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(inception_4a) inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_4e_pool) inception_4e = concatenate([inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3) # inception5a inception_5a_3x3 = Conv2D(96, (1, 1), strides=(1, 1), name="inception_5a_3x3_conv" + "1")( inception_4e ) inception_5a_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_5a_3x3_bn" + "1" )(inception_5a_3x3) inception_5a_3x3 = Activation("relu")(inception_5a_3x3) inception_5a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_5a_3x3) inception_5a_3x3 = Conv2D(384, (3, 3), strides=(1, 1), name="inception_5a_3x3_conv" + "2")( inception_5a_3x3 ) inception_5a_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_5a_3x3_bn" + "2" )(inception_5a_3x3) inception_5a_3x3 = Activation("relu")(inception_5a_3x3) inception_5a_pool = Lambda(lambda x: x**2, name="power2_5a")(inception_4e) inception_5a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_5a_pool) inception_5a_pool = Lambda(lambda x: x * 9, name="mult9_5a")(inception_5a_pool) inception_5a_pool = Lambda(lambda x: K.sqrt(x), name="sqrt_5a")(inception_5a_pool) inception_5a_pool = Conv2D(96, (1, 1), strides=(1, 1), name="inception_5a_pool_conv" + "")( inception_5a_pool ) inception_5a_pool = BatchNormalization( axis=3, epsilon=0.00001, name="inception_5a_pool_bn" + "" )(inception_5a_pool) inception_5a_pool = Activation("relu")(inception_5a_pool) inception_5a_pool = ZeroPadding2D(padding=(1, 1))(inception_5a_pool) inception_5a_1x1 = Conv2D(256, (1, 1), strides=(1, 1), name="inception_5a_1x1_conv" + "")( inception_4e ) inception_5a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_5a_1x1_bn" + "")( inception_5a_1x1 ) inception_5a_1x1 = Activation("relu")(inception_5a_1x1) inception_5a = concatenate([inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3) # inception_5b inception_5b_3x3 = Conv2D(96, (1, 1), strides=(1, 1), name="inception_5b_3x3_conv" + "1")( inception_5a ) inception_5b_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_5b_3x3_bn" + "1" )(inception_5b_3x3) inception_5b_3x3 = Activation("relu")(inception_5b_3x3) inception_5b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_5b_3x3) inception_5b_3x3 = Conv2D(384, (3, 3), strides=(1, 1), name="inception_5b_3x3_conv" + "2")( inception_5b_3x3 ) inception_5b_3x3 = BatchNormalization( axis=3, epsilon=0.00001, name="inception_5b_3x3_bn" + "2" )(inception_5b_3x3) inception_5b_3x3 = Activation("relu")(inception_5b_3x3) inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(inception_5a) inception_5b_pool = Conv2D(96, (1, 1), strides=(1, 1), name="inception_5b_pool_conv" + "")( inception_5b_pool ) inception_5b_pool = BatchNormalization( axis=3, epsilon=0.00001, name="inception_5b_pool_bn" + "" )(inception_5b_pool) inception_5b_pool = Activation("relu")(inception_5b_pool) inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool) inception_5b_1x1 = Conv2D(256, (1, 1), strides=(1, 1), name="inception_5b_1x1_conv" + "")( inception_5a ) inception_5b_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_5b_1x1_bn" + "")( inception_5b_1x1 ) inception_5b_1x1 = Activation("relu")(inception_5b_1x1) inception_5b = concatenate([inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3) av_pool = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(inception_5b) reshape_layer = Flatten()(av_pool) dense_layer = Dense(128, name="dense_layer")(reshape_layer) norm_layer = Lambda(lambda x: K.l2_normalize(x, axis=1), name="norm_layer")(dense_layer) # Final Model model = Model(inputs=[myInput], outputs=norm_layer) # ----------------------------------- weight_file = weight_utils.download_weights_if_necessary( file_name="openface_weights.h5", source_url=url ) model = weight_utils.load_model_weights( model=model, weight_file=weight_file ) # ----------------------------------- return model