# project dependencies from deepface.commons import package_utils, weight_utils from deepface.models.FacialRecognition import FacialRecognition from deepface.commons.logger import Logger logger = Logger() # -------------------------------- # dependency configuration tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Model from keras.layers import Activation from keras.layers import BatchNormalization from keras.layers import Concatenate from keras.layers import Conv2D from keras.layers import Dense from keras.layers import Dropout from keras.layers import GlobalAveragePooling2D from keras.layers import Input from keras.layers import Lambda from keras.layers import MaxPooling2D from keras.layers import add from keras import backend as K else: from tensorflow.keras.models import Model from tensorflow.keras.layers import Activation from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.layers import Concatenate from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import GlobalAveragePooling2D from tensorflow.keras.layers import Input from tensorflow.keras.layers import Lambda from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import add from tensorflow.keras import backend as K # -------------------------------- # pylint: disable=too-few-public-methods class FaceNet128dClient(FacialRecognition): """ FaceNet-128d model class """ def __init__(self): self.model = load_facenet128d_model() self.model_name = "FaceNet-128d" self.input_shape = (160, 160) self.output_shape = 128 class FaceNet512dClient(FacialRecognition): """ FaceNet-1512d model class """ def __init__(self): self.model = load_facenet512d_model() self.model_name = "FaceNet-512d" self.input_shape = (160, 160) self.output_shape = 512 def scaling(x, scale): return x * scale def InceptionResNetV1(dimension: int = 128) -> Model: """ InceptionResNetV1 model heavily inspired from github.com/davidsandberg/facenet/blob/master/src/models/inception_resnet_v1.py As mentioned in Sandberg's repo's readme, pre-trained models are using Inception ResNet v1 Besides training process is documented at sefiks.com/2018/09/03/face-recognition-with-facenet-in-keras/ Args: dimension (int): number of dimensions in the embedding layer Returns: model (Model) """ inputs = Input(shape=(160, 160, 3)) x = Conv2D(32, 3, strides=2, padding="valid", use_bias=False, name="Conv2d_1a_3x3")(inputs) x = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_1a_3x3_BatchNorm" )(x) x = Activation("relu", name="Conv2d_1a_3x3_Activation")(x) x = Conv2D(32, 3, strides=1, padding="valid", use_bias=False, name="Conv2d_2a_3x3")(x) x = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_2a_3x3_BatchNorm" )(x) x = Activation("relu", name="Conv2d_2a_3x3_Activation")(x) x = Conv2D(64, 3, strides=1, padding="same", use_bias=False, name="Conv2d_2b_3x3")(x) x = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_2b_3x3_BatchNorm" )(x) x = Activation("relu", name="Conv2d_2b_3x3_Activation")(x) x = MaxPooling2D(3, strides=2, name="MaxPool_3a_3x3")(x) x = Conv2D(80, 1, strides=1, padding="valid", use_bias=False, name="Conv2d_3b_1x1")(x) x = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_3b_1x1_BatchNorm" )(x) x = Activation("relu", name="Conv2d_3b_1x1_Activation")(x) x = Conv2D(192, 3, strides=1, padding="valid", use_bias=False, name="Conv2d_4a_3x3")(x) x = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_4a_3x3_BatchNorm" )(x) x = Activation("relu", name="Conv2d_4a_3x3_Activation")(x) x = Conv2D(256, 3, strides=2, padding="valid", use_bias=False, name="Conv2d_4b_3x3")(x) x = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_4b_3x3_BatchNorm" )(x) x = Activation("relu", name="Conv2d_4b_3x3_Activation")(x) # 5x Block35 (Inception-ResNet-A block): branch_0 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_1_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block35_1_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_1_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_1_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_1_Conv2d_0b_3x3" )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_1_Branch_1_Conv2d_0b_3x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_1_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) branch_2 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_2_Conv2d_0a_1x1" )(x) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_1_Branch_2_Conv2d_0a_1x1_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_1_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_2_Conv2d_0b_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_1_Branch_2_Conv2d_0b_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_1_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_2_Conv2d_0c_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_1_Branch_2_Conv2d_0c_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_1_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) branches = [branch_0, branch_1, branch_2] mixed = Concatenate(axis=3, name="Block35_1_Concatenate")(branches) up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_1_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) x = add([x, up]) x = Activation("relu", name="Block35_1_Activation")(x) branch_0 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_2_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block35_2_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_2_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_2_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_1_Conv2d_0b_3x3" )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_2_Branch_1_Conv2d_0b_3x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_2_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) branch_2 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_2_Conv2d_0a_1x1" )(x) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_2_Branch_2_Conv2d_0a_1x1_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_2_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_2_Conv2d_0b_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_2_Branch_2_Conv2d_0b_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_2_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_2_Conv2d_0c_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_2_Branch_2_Conv2d_0c_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_2_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) branches = [branch_0, branch_1, branch_2] mixed = Concatenate(axis=3, name="Block35_2_Concatenate")(branches) up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_2_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) x = add([x, up]) x = Activation("relu", name="Block35_2_Activation")(x) branch_0 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_3_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block35_3_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_3_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_3_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_1_Conv2d_0b_3x3" )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_3_Branch_1_Conv2d_0b_3x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_3_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) branch_2 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_2_Conv2d_0a_1x1" )(x) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_3_Branch_2_Conv2d_0a_1x1_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_3_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_2_Conv2d_0b_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_3_Branch_2_Conv2d_0b_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_3_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_2_Conv2d_0c_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_3_Branch_2_Conv2d_0c_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_3_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) branches = [branch_0, branch_1, branch_2] mixed = Concatenate(axis=3, name="Block35_3_Concatenate")(branches) up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_3_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) x = add([x, up]) x = Activation("relu", name="Block35_3_Activation")(x) branch_0 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_4_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block35_4_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_4_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_4_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_1_Conv2d_0b_3x3" )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_4_Branch_1_Conv2d_0b_3x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_4_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) branch_2 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_2_Conv2d_0a_1x1" )(x) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_4_Branch_2_Conv2d_0a_1x1_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_4_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_2_Conv2d_0b_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_4_Branch_2_Conv2d_0b_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_4_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_2_Conv2d_0c_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_4_Branch_2_Conv2d_0c_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_4_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) branches = [branch_0, branch_1, branch_2] mixed = Concatenate(axis=3, name="Block35_4_Concatenate")(branches) up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_4_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) x = add([x, up]) x = Activation("relu", name="Block35_4_Activation")(x) branch_0 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_5_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block35_5_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_5_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_5_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_1_Conv2d_0b_3x3" )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_5_Branch_1_Conv2d_0b_3x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block35_5_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) branch_2 = Conv2D( 32, 1, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_2_Conv2d_0a_1x1" )(x) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_5_Branch_2_Conv2d_0a_1x1_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_5_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_2_Conv2d_0b_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_5_Branch_2_Conv2d_0b_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_5_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) branch_2 = Conv2D( 32, 3, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_2_Conv2d_0c_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block35_5_Branch_2_Conv2d_0c_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Block35_5_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) branches = [branch_0, branch_1, branch_2] mixed = Concatenate(axis=3, name="Block35_5_Concatenate")(branches) up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_5_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) x = add([x, up]) x = Activation("relu", name="Block35_5_Activation")(x) # Mixed 6a (Reduction-A block): branch_0 = Conv2D( 384, 3, strides=2, padding="valid", use_bias=False, name="Mixed_6a_Branch_0_Conv2d_1a_3x3" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Mixed_6a_Branch_0_Conv2d_1a_3x3_Activation")(branch_0) branch_1 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Mixed_6a_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Mixed_6a_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 192, 3, strides=1, padding="same", use_bias=False, name="Mixed_6a_Branch_1_Conv2d_0b_3x3" )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Mixed_6a_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) branch_1 = Conv2D( 256, 3, strides=2, padding="valid", use_bias=False, name="Mixed_6a_Branch_1_Conv2d_1a_3x3" )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Mixed_6a_Branch_1_Conv2d_1a_3x3_Activation")(branch_1) branch_pool = MaxPooling2D( 3, strides=2, padding="valid", name="Mixed_6a_Branch_2_MaxPool_1a_3x3" )(x) branches = [branch_0, branch_1, branch_pool] x = Concatenate(axis=3, name="Mixed_6a")(branches) # 10x Block17 (Inception-ResNet-B block): branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_1_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_1_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_1_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_1_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_1_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_1_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_1_Branch_1_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_1_Branch_1_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_1_Branch_1_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_1_Branch_1_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_1_Branch_1_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_1_Branch_1_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_1_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_1_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_1_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_2_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_2_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_2_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_2_Branch_2_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_2_Branch_2_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_2_Branch_2_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_2_Branch_2_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_2_Branch_2_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_2_Branch_2_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_2_Branch_2_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_2_Branch_2_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_2_Branch_2_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_2_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_2_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_2_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_3_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_3_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_3_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_3_Branch_3_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_3_Branch_3_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_3_Branch_3_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_3_Branch_3_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_3_Branch_3_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_3_Branch_3_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_3_Branch_3_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_3_Branch_3_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_3_Branch_3_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_3_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_3_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_3_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_4_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_4_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_4_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_4_Branch_4_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_4_Branch_4_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_4_Branch_4_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_4_Branch_4_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_4_Branch_4_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_4_Branch_4_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_4_Branch_4_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_4_Branch_4_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_4_Branch_4_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_4_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_4_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_4_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_5_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_5_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_5_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_5_Branch_5_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_5_Branch_5_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_5_Branch_5_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_5_Branch_5_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_5_Branch_5_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_5_Branch_5_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_5_Branch_5_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_5_Branch_5_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_5_Branch_5_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_5_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_5_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_5_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_6_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_6_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_6_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_6_Branch_6_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_6_Branch_6_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_6_Branch_6_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_6_Branch_6_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_6_Branch_6_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_6_Branch_6_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_6_Branch_6_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_6_Branch_6_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_6_Branch_6_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_6_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_6_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_6_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_7_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_7_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_7_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_7_Branch_7_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_7_Branch_7_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_7_Branch_7_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_7_Branch_7_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_7_Branch_7_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_7_Branch_7_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_7_Branch_7_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_7_Branch_7_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_7_Branch_7_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_7_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_7_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_7_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_8_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_8_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_8_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_8_Branch_8_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_8_Branch_8_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_8_Branch_8_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_8_Branch_8_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_8_Branch_8_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_8_Branch_8_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_8_Branch_8_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_8_Branch_8_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_8_Branch_8_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_8_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_8_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_8_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_9_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_9_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_9_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_9_Branch_9_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_9_Branch_9_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_9_Branch_9_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_9_Branch_9_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_9_Branch_9_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_9_Branch_9_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_9_Branch_9_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_9_Branch_9_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_9_Branch_9_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_9_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_9_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_9_Activation")(x) branch_0 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_10_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_10_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block17_10_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 128, 1, strides=1, padding="same", use_bias=False, name="Block17_10_Branch_10_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_10_Branch_10_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_10_Branch_10_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 128, [1, 7], strides=1, padding="same", use_bias=False, name="Block17_10_Branch_10_Conv2d_0b_1x7", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_10_Branch_10_Conv2d_0b_1x7_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_10_Branch_10_Conv2d_0b_1x7_Activation")(branch_1) branch_1 = Conv2D( 128, [7, 1], strides=1, padding="same", use_bias=False, name="Block17_10_Branch_10_Conv2d_0c_7x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block17_10_Branch_10_Conv2d_0c_7x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block17_10_Branch_10_Conv2d_0c_7x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block17_10_Concatenate")(branches) up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_10_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) x = add([x, up]) x = Activation("relu", name="Block17_10_Activation")(x) # Mixed 7a (Reduction-B block): 8 x 8 x 2080 branch_0 = Conv2D( 256, 1, strides=1, padding="same", use_bias=False, name="Mixed_7a_Branch_0_Conv2d_0a_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Mixed_7a_Branch_0_Conv2d_0a_1x1_Activation")(branch_0) branch_0 = Conv2D( 384, 3, strides=2, padding="valid", use_bias=False, name="Mixed_7a_Branch_0_Conv2d_1a_3x3" )(branch_0) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Mixed_7a_Branch_0_Conv2d_1a_3x3_Activation")(branch_0) branch_1 = Conv2D( 256, 1, strides=1, padding="same", use_bias=False, name="Mixed_7a_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Mixed_7a_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 256, 3, strides=2, padding="valid", use_bias=False, name="Mixed_7a_Branch_1_Conv2d_1a_3x3" )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Mixed_7a_Branch_1_Conv2d_1a_3x3_Activation")(branch_1) branch_2 = Conv2D( 256, 1, strides=1, padding="same", use_bias=False, name="Mixed_7a_Branch_2_Conv2d_0a_1x1" )(x) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Mixed_7a_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) branch_2 = Conv2D( 256, 3, strides=1, padding="same", use_bias=False, name="Mixed_7a_Branch_2_Conv2d_0b_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Mixed_7a_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) branch_2 = Conv2D( 256, 3, strides=2, padding="valid", use_bias=False, name="Mixed_7a_Branch_2_Conv2d_1a_3x3" )(branch_2) branch_2 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm", )(branch_2) branch_2 = Activation("relu", name="Mixed_7a_Branch_2_Conv2d_1a_3x3_Activation")(branch_2) branch_pool = MaxPooling2D( 3, strides=2, padding="valid", name="Mixed_7a_Branch_3_MaxPool_1a_3x3" )(x) branches = [branch_0, branch_1, branch_2, branch_pool] x = Concatenate(axis=3, name="Mixed_7a")(branches) # 5x Block8 (Inception-ResNet-C block): branch_0 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_1_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_1_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block8_1_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_1_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_1_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_1_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 192, [1, 3], strides=1, padding="same", use_bias=False, name="Block8_1_Branch_1_Conv2d_0b_1x3", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_1_Branch_1_Conv2d_0b_1x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_1_Branch_1_Conv2d_0b_1x3_Activation")(branch_1) branch_1 = Conv2D( 192, [3, 1], strides=1, padding="same", use_bias=False, name="Block8_1_Branch_1_Conv2d_0c_3x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_1_Branch_1_Conv2d_0c_3x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_1_Branch_1_Conv2d_0c_3x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block8_1_Concatenate")(branches) up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_1_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) x = add([x, up]) x = Activation("relu", name="Block8_1_Activation")(x) branch_0 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_2_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_2_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block8_2_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_2_Branch_2_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_2_Branch_2_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_2_Branch_2_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 192, [1, 3], strides=1, padding="same", use_bias=False, name="Block8_2_Branch_2_Conv2d_0b_1x3", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_2_Branch_2_Conv2d_0b_1x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_2_Branch_2_Conv2d_0b_1x3_Activation")(branch_1) branch_1 = Conv2D( 192, [3, 1], strides=1, padding="same", use_bias=False, name="Block8_2_Branch_2_Conv2d_0c_3x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_2_Branch_2_Conv2d_0c_3x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_2_Branch_2_Conv2d_0c_3x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block8_2_Concatenate")(branches) up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_2_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) x = add([x, up]) x = Activation("relu", name="Block8_2_Activation")(x) branch_0 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_3_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_3_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block8_3_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_3_Branch_3_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_3_Branch_3_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_3_Branch_3_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 192, [1, 3], strides=1, padding="same", use_bias=False, name="Block8_3_Branch_3_Conv2d_0b_1x3", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_3_Branch_3_Conv2d_0b_1x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_3_Branch_3_Conv2d_0b_1x3_Activation")(branch_1) branch_1 = Conv2D( 192, [3, 1], strides=1, padding="same", use_bias=False, name="Block8_3_Branch_3_Conv2d_0c_3x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_3_Branch_3_Conv2d_0c_3x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_3_Branch_3_Conv2d_0c_3x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block8_3_Concatenate")(branches) up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_3_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) x = add([x, up]) x = Activation("relu", name="Block8_3_Activation")(x) branch_0 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_4_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_4_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block8_4_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_4_Branch_4_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_4_Branch_4_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_4_Branch_4_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 192, [1, 3], strides=1, padding="same", use_bias=False, name="Block8_4_Branch_4_Conv2d_0b_1x3", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_4_Branch_4_Conv2d_0b_1x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_4_Branch_4_Conv2d_0b_1x3_Activation")(branch_1) branch_1 = Conv2D( 192, [3, 1], strides=1, padding="same", use_bias=False, name="Block8_4_Branch_4_Conv2d_0c_3x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_4_Branch_4_Conv2d_0c_3x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_4_Branch_4_Conv2d_0c_3x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block8_4_Concatenate")(branches) up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_4_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) x = add([x, up]) x = Activation("relu", name="Block8_4_Activation")(x) branch_0 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_5_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_5_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block8_5_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_5_Branch_5_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_5_Branch_5_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_5_Branch_5_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 192, [1, 3], strides=1, padding="same", use_bias=False, name="Block8_5_Branch_5_Conv2d_0b_1x3", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_5_Branch_5_Conv2d_0b_1x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_5_Branch_5_Conv2d_0b_1x3_Activation")(branch_1) branch_1 = Conv2D( 192, [3, 1], strides=1, padding="same", use_bias=False, name="Block8_5_Branch_5_Conv2d_0c_3x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_5_Branch_5_Conv2d_0c_3x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_5_Branch_5_Conv2d_0c_3x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block8_5_Concatenate")(branches) up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_5_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) x = add([x, up]) x = Activation("relu", name="Block8_5_Activation")(x) branch_0 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_6_Branch_0_Conv2d_1x1" )(x) branch_0 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_6_Branch_0_Conv2d_1x1_BatchNorm", )(branch_0) branch_0 = Activation("relu", name="Block8_6_Branch_0_Conv2d_1x1_Activation")(branch_0) branch_1 = Conv2D( 192, 1, strides=1, padding="same", use_bias=False, name="Block8_6_Branch_1_Conv2d_0a_1x1" )(x) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_6_Branch_1_Conv2d_0a_1x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_6_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) branch_1 = Conv2D( 192, [1, 3], strides=1, padding="same", use_bias=False, name="Block8_6_Branch_1_Conv2d_0b_1x3", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_6_Branch_1_Conv2d_0b_1x3_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_6_Branch_1_Conv2d_0b_1x3_Activation")(branch_1) branch_1 = Conv2D( 192, [3, 1], strides=1, padding="same", use_bias=False, name="Block8_6_Branch_1_Conv2d_0c_3x1", )(branch_1) branch_1 = BatchNormalization( axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Block8_6_Branch_1_Conv2d_0c_3x1_BatchNorm", )(branch_1) branch_1 = Activation("relu", name="Block8_6_Branch_1_Conv2d_0c_3x1_Activation")(branch_1) branches = [branch_0, branch_1] mixed = Concatenate(axis=3, name="Block8_6_Concatenate")(branches) up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_6_Conv2d_1x1")( mixed ) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 1})(up) x = add([x, up]) # Classification block x = GlobalAveragePooling2D(name="AvgPool")(x) x = Dropout(1.0 - 0.8, name="Dropout")(x) # Bottleneck x = Dense(dimension, use_bias=False, name="Bottleneck")(x) x = BatchNormalization(momentum=0.995, epsilon=0.001, scale=False, name="Bottleneck_BatchNorm")( x ) # Create model model = Model(inputs, x, name="inception_resnet_v1") return model def load_facenet128d_model( url="https://github.com/serengil/deepface_models/releases/download/v1.0/facenet_weights.h5", ) -> Model: """ Construct FaceNet-128d model, download weights and then load weights Args: dimension (int): construct FaceNet-128d or FaceNet-512d models Returns: model (Model) """ model = InceptionResNetV1() weight_file = weight_utils.download_weights_if_necessary( file_name="facenet_weights.h5", source_url=url ) model = weight_utils.load_model_weights( model=model, weight_file=weight_file ) return model def load_facenet512d_model( url="https://github.com/serengil/deepface_models/releases/download/v1.0/facenet512_weights.h5", ) -> Model: """ Construct FaceNet-512d model, download its weights and load Returns: model (Model) """ model = InceptionResNetV1(dimension=512) weight_file = weight_utils.download_weights_if_necessary( file_name="facenet512_weights.h5", source_url=url ) model = weight_utils.load_model_weights( model=model, weight_file=weight_file ) return model