# 3rd party dependencies import numpy as np # project dependencies from deepface.models.facial_recognition import VGGFace from deepface.commons import package_utils, weight_utils from deepface.models.Demography import Demography from deepface.commons.logger import Logger logger = Logger() # ------------------------------------- # pylint: disable=line-too-long # ------------------------------------- # dependency configurations tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Model, Sequential from keras.layers import Convolution2D, Flatten, Activation else: from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Convolution2D, Flatten, Activation # ------------------------------------- # Labels for the genders that can be detected by the model. labels = ["Woman", "Man"] # pylint: disable=too-few-public-methods class GenderClient(Demography): """ Gender model class """ def __init__(self): self.model = load_model() self.model_name = "Gender" def predict(self, img: np.ndarray) -> np.ndarray: # model.predict causes memory issue when it is called in a for loop # return self.model.predict(img, verbose=0)[0, :] return self.model(img, training=False).numpy()[0, :] def load_model( url="https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5", ) -> Model: """ Construct gender model, download its weights and load Returns: model (Model) """ model = VGGFace.base_model() # -------------------------- classes = 2 base_model_output = Sequential() base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output) base_model_output = Flatten()(base_model_output) base_model_output = Activation("softmax")(base_model_output) # -------------------------- gender_model = Model(inputs=model.input, outputs=base_model_output) # -------------------------- # load weights weight_file = weight_utils.download_weights_if_necessary( file_name="gender_model_weights.h5", source_url=url ) gender_model = weight_utils.load_model_weights( model=gender_model, weight_file=weight_file ) return gender_model