# 3rd party dependencies import numpy as np import cv2 # project dependencies from deepface.commons import package_utils, weight_utils from deepface.models.Demography import Demography from deepface.commons.logger import Logger logger = Logger() # ------------------------------------------- # pylint: disable=line-too-long # ------------------------------------------- # dependency configuration tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout else: from tensorflow.keras.models import Sequential from tensorflow.keras.layers import ( Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout, ) # ------------------------------------------- # Labels for the emotions that can be detected by the model. labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"] # pylint: disable=too-few-public-methods class EmotionClient(Demography): """ Emotion model class """ def __init__(self): self.model = load_model() self.model_name = "Emotion" def predict(self, img: np.ndarray) -> np.ndarray: img_gray = cv2.cvtColor(img[0], cv2.COLOR_BGR2GRAY) img_gray = cv2.resize(img_gray, (48, 48)) img_gray = np.expand_dims(img_gray, axis=0) # model.predict causes memory issue when it is called in a for loop # emotion_predictions = self.model.predict(img_gray, verbose=0)[0, :] emotion_predictions = self.model(img_gray, training=False).numpy()[0, :] return emotion_predictions def load_model( url="https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5", ) -> Sequential: """ Consruct emotion model, download and load weights """ num_classes = 7 model = Sequential() # 1st convolution layer model.add(Conv2D(64, (5, 5), activation="relu", input_shape=(48, 48, 1))) model.add(MaxPooling2D(pool_size=(5, 5), strides=(2, 2))) # 2nd convolution layer model.add(Conv2D(64, (3, 3), activation="relu")) model.add(Conv2D(64, (3, 3), activation="relu")) model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2))) # 3rd convolution layer model.add(Conv2D(128, (3, 3), activation="relu")) model.add(Conv2D(128, (3, 3), activation="relu")) model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2))) model.add(Flatten()) # fully connected neural networks model.add(Dense(1024, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(1024, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation="softmax")) # ---------------------------- weight_file = weight_utils.download_weights_if_necessary( file_name="facial_expression_model_weights.h5", source_url=url ) model = weight_utils.load_model_weights( model=model, weight_file=weight_file ) return model