90 lines
2.5 KiB
Python
90 lines
2.5 KiB
Python
|
|
# 3rd party dependencies
|
||
|
|
import numpy as np
|
||
|
|
|
||
|
|
# project dependencies
|
||
|
|
from deepface.models.facial_recognition import VGGFace
|
||
|
|
from deepface.commons import package_utils, weight_utils
|
||
|
|
from deepface.models.Demography import Demography
|
||
|
|
from deepface.commons.logger import Logger
|
||
|
|
|
||
|
|
logger = Logger()
|
||
|
|
|
||
|
|
# ----------------------------------------
|
||
|
|
# dependency configurations
|
||
|
|
|
||
|
|
tf_version = package_utils.get_tf_major_version()
|
||
|
|
|
||
|
|
if tf_version == 1:
|
||
|
|
from keras.models import Model, Sequential
|
||
|
|
from keras.layers import Convolution2D, Flatten, Activation
|
||
|
|
else:
|
||
|
|
from tensorflow.keras.models import Model, Sequential
|
||
|
|
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
||
|
|
|
||
|
|
# ----------------------------------------
|
||
|
|
|
||
|
|
# pylint: disable=too-few-public-methods
|
||
|
|
class ApparentAgeClient(Demography):
|
||
|
|
"""
|
||
|
|
Age model class
|
||
|
|
"""
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self.model = load_model()
|
||
|
|
self.model_name = "Age"
|
||
|
|
|
||
|
|
def predict(self, img: np.ndarray) -> np.float64:
|
||
|
|
# model.predict causes memory issue when it is called in a for loop
|
||
|
|
# age_predictions = self.model.predict(img, verbose=0)[0, :]
|
||
|
|
age_predictions = self.model(img, training=False).numpy()[0, :]
|
||
|
|
return find_apparent_age(age_predictions)
|
||
|
|
|
||
|
|
|
||
|
|
def load_model(
|
||
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5",
|
||
|
|
) -> Model:
|
||
|
|
"""
|
||
|
|
Construct age model, download its weights and load
|
||
|
|
Returns:
|
||
|
|
model (Model)
|
||
|
|
"""
|
||
|
|
|
||
|
|
model = VGGFace.base_model()
|
||
|
|
|
||
|
|
# --------------------------
|
||
|
|
|
||
|
|
classes = 101
|
||
|
|
base_model_output = Sequential()
|
||
|
|
base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output)
|
||
|
|
base_model_output = Flatten()(base_model_output)
|
||
|
|
base_model_output = Activation("softmax")(base_model_output)
|
||
|
|
|
||
|
|
# --------------------------
|
||
|
|
|
||
|
|
age_model = Model(inputs=model.input, outputs=base_model_output)
|
||
|
|
|
||
|
|
# --------------------------
|
||
|
|
|
||
|
|
# load weights
|
||
|
|
weight_file = weight_utils.download_weights_if_necessary(
|
||
|
|
file_name="age_model_weights.h5", source_url=url
|
||
|
|
)
|
||
|
|
|
||
|
|
age_model = weight_utils.load_model_weights(
|
||
|
|
model=age_model, weight_file=weight_file
|
||
|
|
)
|
||
|
|
|
||
|
|
return age_model
|
||
|
|
|
||
|
|
def find_apparent_age(age_predictions: np.ndarray) -> np.float64:
|
||
|
|
"""
|
||
|
|
Find apparent age prediction from a given probas of ages
|
||
|
|
Args:
|
||
|
|
age_predictions (?)
|
||
|
|
Returns:
|
||
|
|
apparent_age (float)
|
||
|
|
"""
|
||
|
|
output_indexes = np.arange(0, 101)
|
||
|
|
apparent_age = np.sum(age_predictions * output_indexes)
|
||
|
|
return apparent_age
|